Параметры ИВЛ.

При разработке подходов к подбору параметров ИВЛ нам пришлось преодолеть ряд предубеждений, традиционно «кочующих» из одной книги в другую и для многих реаниматологов ставших практически аксиомами. Эти предубеждения можно сформулировать следующим образом:

•ИВЛ вредна для мозга, так как повышает ВЧД и опасна для центральной гемодинамики, так как снижает сердечный выброс.
•Если врач вынужден проводить ИВЛ у пострадавшего с тяжелой ЧМТ, ни в коем случае нельзя применять PEEP, так как это еще больше повысит внутригрудное давление и усилит отрицательные эффекты ИВЛ на мозг и центральную гемодинамику.
•Повышенные концентрации кислорода во вдыхаемой больным смеси опасны из-за вызываемого ими спазма сосудов мозга и прямого повреждающего эффекта на легкие. Кроме того, при проведении оксигенотерапии имеются возможность угнетения дыхания из-за снятия гипоксической стимуляции дыхательного центра.

Специально проведенные нами исследования показали, что бытующие представления об отрицательном влиянии аппаратного дыхания на внутричерепное давление не имеют под собой почвы. ВЧД при проведении ИВЛ может повышаться не из-за простого факта перевода больного со спонтанной вентиляции на поддержку респиратором, а из-за возникновения борьбы больного с респиратором. Влияние перевода больного с самостоятельного дыхания на искусственную вентиляцию легких на показатели церебральной гемодинамики и оксигенации мозга был исследован нами у 43 пострадавших с тяжелой ЧМТ.

Респираторная поддержка начиналась ввиду угнетения уровня сознания до сопора и комы. Признаки дыхательной недостаточности отсутствовали. При проведении ИВЛ у большинства пациентов отмечена нормализация церебральной артериовенозной разницы по кислороду, что свидетельствало об улучшении его доставки к мозгу и купировании церебральной гипоксии. При переводе больных со спонтанного дыхания на искусственную вентиляцию легких существенных изменений ВЧД и ЦПД не было.

Совершенно другая ситуация складывалась при несинхронности дыхательных попыток больного и работы респиратора. Подчеркнем, что нужно различать два понятия. Первое понятие – это несинхронность дыхания больного и работы респиратора, присущее ряду современных режимов вентиляции (в частности BiPAP), когда независимо друг от друга существуют спонтанное дыхание и механические вдохи. При правильном подборе параметров режима данная несинхронность не сопровождается повышением внутригрудного давления и каким-либо отрицательным влиянием на ВЧД и центральную гемодинамику. Второе понятие – борьба больного с респиратором, которая сопровождается дыханием пациента через закрытый контур аппарата ИВЛ и вызывает повышение внутригрудного давления более 40-50 см вод. ст. «Борьба с респиратором» очень опасна для мозга. В наших исследованиях получена следующая динамика показателей нейромониторинга - снижение церебральной артериовенозной разницы по кислороду до 10-15% и повышение ВЧД до 50 мм рт.ст. и выше. Это свидетельствовало о развитии гиперемии мозга, вызывавшей нарастание внутричерепной гипертензии.

На основании проведенных исследований и клинического опыта для предупреждения борьбы с респиратором мы рекомендуем применять специальный алгоритм подбора параметров вспомогательной вентиляции.

Алгоритм подбора параметров ИВЛ.
Устанавливают так называемые базовые параметры вентиляции, обеспечивающие поступление кислородно-воздушной смеси в режиме нормовентиляции: VT = 8-10 мл/кг, FPEAK = 35-45 л/мин, f = 10-12 в 1 мин, PEEP = 5 см вод. ст., нисходящая форма потока. Величина МОД должна составлять 8-9 л/мин. Обычно используют Assist Control или SIMV + Pressure Support, в зависимости от вида респиратора. Подбирают такую чувствительность триггера, которая будет достаточно высокой, чтобы не вызывать десинхронизации больного и респиратора. В то же время она должна быть достаточно низкой, чтобы не вызывать аутоциклирования аппарата ИВЛ. Обычная величина чувствительности по давлению (-3)–(-4) см вод. ст., по потоку (-2)–(-3) л/мин. В результате больному обеспечивается поступление гарантированного минутного объема дыхания. При возникновении дополнительных дыхательных попыток респиратор увеличивает поступление кислородно-воздушной смеси. Такой подход удобен и безопасен, однако требует постоянного контроля над величиной МОД, paCO2, насыщения кислородом гемоглобина в венозной крови мозга, так как имеется опасность развития пролонгированной гипервентиляции.

Что касается возможных расстройств гемодинамики при проведении ИВЛ, то к этому выводу приходят обычно на основании следующей цепочки умозаключений: «ИВЛ проводится методом вдувания воздуха в легкие, поэтому при ней повышается внутригрудное давление, что вызывает нарушения венозного возврата к сердцу. В результате повышается ВЧД и падает сердечный выброс». Однако вопрос не столь однозначен. В зависимости от величины давления в дыхательных путях, состояния миокарда и степени волемии при проведении ИВЛ сердечный выброс может как повышаться, так и снижаться.

Следующей проблемой при проведении ИВЛ у пострадавших с ЧМТ является безопасность применения повышенного давления в конце выдоха (РЕЕР). Хотя G. МcGuire et al. (1997) продемонстрировали отсутствие существенных изменений ВЧД и ЦПД при повышении РЕЕР до 5, 10 и 15 см вод.ст. у пациентов с разным уровнем внутричерепной гипертензии, мы провели собственное исследование. По нашим данным, в первые 5 сут тяжелой ЧМТ при величинах PEEP к концу выдоха 5 и 8 см вод.ст. отмечались незначительные изменения ВЧД, что позволяло сделать вывод о допустимости применения этих значений РЕЕР с точки зрения внутричерепной гемодинамики. В то же время уровень РЕЕР 10 см вод.ст. и выше у ряда больных существенно влиял на ВЧД, повышая его на 5 мм рт. ст. и более. Следовательно, такое повышение давления в конце выдоха можно использовать только при незначительной исходной внутричерепной гипертензии.

В реальной клинической практике проблема влияния PЕEP на ВЧД не встает столь остро. Дело в том, что вызываемое применением РЕЕР повышение внутригрудного давления по-разному влияет на давление в венозной системе в зависимости от степени повреждения легких. В случае здоровых легких с нормальной податливостью повышение РЕЕР распределяется примерно поровну между грудной клеткой и легкими. На венозное давление влияет только давление в легких. Приведем примерный расчет: при здоровых легких повышение РЕЕР на 10 см вод. ст. будет сопровождаться повышением ЦВД и ВЧД на 5 см вод. ст. (что составляет примерно 4 мм рт. ст.). В случае увеличения жесткости легких повышение РЕЕР в основном приводит к растяжению грудной клетки и практически вообще не сказывается на внутрилегочном давлении. Продолжим расчеты: при пораженных легких повышение РЕЕР на 10 см вод. ст. будет сопровождаться повышением ЦВД и ВЧД лишь на 3 см вод. ст. (что составляет примерно 2 мм рт. ст.). Таким образом, в тех клинических ситуациях, в которых необходимо значительное повышение PEEP (остром повреждении легких и ОРДС), даже большие его величины существенно не влияют на ЦВД и ВЧД.

Еще одна проблема – возможные отрицательные эффекты повышенных концентраций кислорода. В нашей клинике у 34 пациентов специально исследовано влияние оксигенации 100%-ным кислородом продолжительностью от 5 до 60 мин на тонус сосудов головного мозга. Ни в одном из клинических случаев не отмечено снижения ВЧД. Этот факт свидетельствовал о том, что внутричерепной объем крови не изменялся. Следовательно, не было сужения сосудов и развития церебрального вазоспазма. Вывод подтверждало исследование линейной скорости кровотока в крупных артериях мозга методом транскраниальной допплерографии. Ни у одного из обследованных больных при подаче кислорода линейная скорость кровотока в средней мозговой, передней мозговой и основной артериях достоверно не менялась. Существенных изменений АД и ЦПД при оксигенации 100%-ным кислородом нами также не отмечено. Таким образом, из-за особой чувствительности пострадавшего мозга к гипоксии нужно полностью отказаться от проведения ИВЛ с использованием чисто воздушных смесей. Необходимо применение кислородно-воздушных смесей с содержанием кислорода 0,35-0,5 (чаще всего 0,4) в течение всего периода проведения искусственной и вспомогательной вентиляции легких. Мы не исключаем возможности применения и более высоких концентраций кислорода (0,7-0,8, вплоть до 1,0) для целей экстренной нормализации оксигенации головного мозга. Этим достигается нормализация повышенной артериовенозной разницы по кислороду. Применение повышенного содержания кислорода в дыхательной смеси нужно стремиться ограничить короткими сроками, учитывая известные повреждающие эффекты гипероксигенации на легочную паренхиму и возникновение абсорбционных ателектазов.

Немного физиологии
Как всякое лекарство, кислород может быть и полезен, и вреден. Извечная проблема реаниматолога: «Что опаснее для больного – гипоксия или гипероксия?». О негативных эффектах гипоксии написаны целые руководства, поэтому отметим ее главный отрицательный эффект. Для того чтобы нормально функционировать, клетки нуждаются в энергии. Причем не в любом виде, а только в удобной форме, в виде молекул–макроэргов. В процессе синтеза макроэргов образуются лишние атомы водорода (протоны), эффективно удалить которые можно только по так называемой дыхательной цепочке путем связывания с атомами кислорода. Для работы этой цепочки нужно большое количество кислородных атомов.

Однако использование высоких концентраций кислорода тоже может запускать ряд патологических механизмов. Во-первых, это образование агрессивных свободных радикалов и активация процесса перекисного окисления липидов, сопровождающегося разрушением липидного слоя клеточных стенок. Особенно этот процесс опасен в альвеолах, так как они подвергаются действию наибольших концентраций кислорода. При длительной экспозиции 100%-ный кислород может вызывать поражение легких по типу ОРДС. Не исключено участие механизма перекисного окисления липидов в поражении других органов, например мозга.

Во-вторых, если в легкие поступает атмосферный воздух, то он на 21% состоит из кислорода, нескольких процентов водяных паров и более чем на 70% из азота. Азот – химически инертный газ, в кровь не всасывается и остается в альвеолах. Однако химически инертный – это не означает бесполезный. Оставаясь в альвеолах, азот поддерживает их воздушность, являясь своеобразным экспандером. Если воздух заменить чистым кислородом, то последний может полностью всосаться (абсорбироваться) из альвеолы в кровь. Альвеола спадется, и образуется абсорбционный ателектаз.

В-третьих, стимуляция дыхательного центра вызывается двумя путями: при накоплении углекислоты и недостатке кислорода. У пациентов с резко выраженной дыхательной недостаточностью, особенно у так называемых «дыхательных хроников», дыхательный центр постепенно становится нечувствителен к избытку углекислоты и основное значение в его стимуляции приобретает недостаток кислорода. Если этот недостаток купировать введением кислорода, то из-за отсутствия стимуляции может произойти остановка дыхания.

Наличие негативных эффектов повышенных концентраций кислорода диктует настоятельную необходимость сокращения времени их использования. Однако если больному угрожает гипоксия, то ее отрицательное влияние гораздо опаснее и проявится быстрее, чем негативный эффект гипероксии. В связи с этим для профилактики эпизодов гипоксии необходимо всегда применять преоксигенацию больного 100% кислородом перед любой транспортировкой, интубацией трахеи, сменой интубационной трубки, трахеостомией, санацией трахеобронхиального дерева. Что касается угнетения дыхания при повышении концентрации кислорода, то указанный механизм действительно может иметь место при ингаляции кислорода у больных с обострением хронической дыхательной недостаточности. Однако в этой ситуации необходимо не увеличение концентрации кислорода во вдыхаемом воздухе при самостоятельном дыхании больного, а перевод больного на искусственную вентиляцию, что снимает актуальность проблемы угнетения дыхательного центра гипероксическими смесями.

Кроме гиповентиляции, приводящей к гипоксии и гиперкапнии, опасной является и гипервентиляция. В наших исследованиях, как и в других работах (J. Muizelaar et al., 1991), установлено, что необходимо избегать намеренной гипервентиляции. Возникающая при этом гипокапния вызывает сужение сосудов мозга, увеличение церебральной артериовенозной разницы по кислороду, уменьшение мозгового кровотока. В то же время, если по какой-либо причине, например, из-за гипоксии или гипертермии, у больного развивается спонтанная гипервентиляция, то не все средства хороши для ее устранения.

Необходима коррекция причины, вызвавшей повышение объема минутной вентиляции. Нужно снизить температуру тела, используя ненаркотические анальгетики и (или) физические методы охлаждения, устранить гипоксию, вызванную обструкцией дыхательных путей, недостаточной оксигенацией дыхательной смеси, гиповолемией, анемией. При необходимости возможно применение седативных препаратов в расчете на снижение потребления организмом кислорода и уменьшение необходимой минутной вентиляции легких. Однако нельзя просто применить миорелаксанты и навязать больному желаемый объем вентиляции при помощи аппарата ИВЛ, так как существует серьезная опасность резкой внутричерепной гипертензии из-за быстрой нормализации уровня углекислоты в крови и гиперемии церебральных сосудов. Мы уже приводили результаты наших исследований, которые показали, что нежелательно не только повышение уровня углекислоты выше нормы 38-42 мм рт.ст., но даже быстрая нормализация значений раСО2 после периода длительной гипокапнии.

При выборе параметров вентиляции очень важно оставаться в рамках концепции «open lung rest» (A. Doctor, J. Arnold, 1999). Современные представления о ведущем значении баро- и волюмотравмы в развитии повреждения легких при ИВЛ диктуют необходимость тщательного контроля пикового давления в дыхательных путях, которое не должно превышать 30-35 см вод.ст. При отсутствии поражения легких дыхательный объем, подаваемый респиратором, составляет 8-10 мл/кг массы больного. При выраженном поражении легких дыхательный объем не должен превышать 6-7 мл/кг. Для профилактики коллабирования легких используют РЕЕР 5-6 см вод. ст., а также периодические раздувания легких полуторным дыхательным объемом (sigh) или повышение РЕЕР до 10-15 см. вод. ст. на протяжении 3-5 вдохов (1 раз на 100 дыхательных движений).